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FOREWORD 

~ 

This report describes work accomplished under Contract NAS 3-2540 during the period 

I June 21, 1965 to September 20, 1965. This program i s  being administered by R. T. Begley 

of the Astronuclear Laboratory, Westinghouse Electric Corporation. G. G. Lessmann and 

D. R. Stoner are responsible for the performance of this investigation. 

~ 

Mr. P. E. Moorhead of the National Aeronautics and Space Administration i s  Technical 

Manager of this program. 

... 
Ill 



Astronuclear @ Laboratory 

TABLE OF CONTENTS 

1. INTRODUCTION 

I I .  SUMMARY 

1 1 1 .  TECHNICAL PROGRAM 

A. 

B. 

Weld and Base Metal Tensile Properties 

Effect of Oxygen Contamination on Weldabi lity 
I 

IV. FUTURE WORK 

V. REFERENCES 

Page 

1 

2 

3 

3 

12 

17 

18 



LIST OF TABLES 

1. 

2. 

3. 

4. 

Alloys Included in the Weldability and Thermal Stability Evaluations 

Optimum Weld Conditions for 0.035 Inch Sheet 

Compilation of Sheet Tensile Properties 

One Hour Post Weld Annealing Temperatures Used on Plate Weld 
Tensile Specimens 

Tensile Test Properties of FS-85, Uncontaminated and 500 ppm O2 

2 Tensile Test Properties of T-1 11 , Uncontaminated and 350 ppm 0 

Tensile Test Properties of T-222, Uncontaminated and 350 ppm O2 

5. 

6. 
7. 

Astronuclear 
Laboratory 

Page 

21 

22 

23 
27 

28 

29 

30 

V 



Astronuclear @ laboratory 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

LIST OF FIGURES 
Page 

Room Temperature Sheet Tensile Specimen Design 

Elevated Temperature Sheet Tensile Specimen Design 

TIG Welds 

31 

32 

33 

34 

35 
and TI G Welds 

Room Temperature Tensile Strength 36 

37 
at 240OoF 

T-1 1 1 Elevated Temperature Transverse Weld Tensile Fractures 38 

Elevated Temperature Tensile Strength of Annealed Base Metal and 

Elevated Temperature Yield Strength of Annealed Base Metal and 

Elevated Temperature Tensile Elongation of Annealed Base Metal 

TI G Welds 

Selected Metallography of Ta-1OW Before and After Tensile Testing 

T-222 Elevated Temperature Transverse Weld Tensile Fractures 

Base Metal Fracture of the 240OoF 8-66 Tensile Specimens 

39 

40 

Microstructure of C-l29Y, Base Metal and Transverse Weld 240OOF Tensile 
Specimens 

Base Metal Fracture of the 240OoF Cb-752 Tensile Specimen 

Weld Fracture of the 240OoF Transverse D-43 Weld Tensile Specimen 

41 

42 

42 

43 

44 

45 

46 

47 

Microstructure of D-43Y Tensile Specimen Tested at 240OOF 

Weld Fracture of the 240OoF FS-85 Weld Tensile Specimen 

Program Outline for Contaminated Alloy Weldability Evaluation 

FS-85, Variation of Ducti le-Brittle Transition Temperature with Oxygen 

Detailed Outline of Specimen Requirements for Oxidation Program 

Content 

T-1 1 1, Variation of Ductile-Brittle Transition Temperature with Oxygen 
Content 

48 

T-222, Variation of Ducti le-Brittle Transition Temperature with Oxygen 49 
Content 

v i  



b 

f 

LIST OF FIGURES (Continued) 

Astronuclear 
laboratory 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

Longitudinal Bend Test Results of FS-85, Low Level 0 Content 2 
Longitudinal Bend Test Results of FS-85, High Level 0 Content 2 
Longitudinal Bend Test Results of FS-85, Preliminary Data 

Longitudinal Bend Test Results of T-11 1, Cow Level O2 Content 

Longitudinal Bend Test Results of T-111, High Level O2 Content 

Longitudinal Bend Test Results of T-111, Preliminary Data 

Longitudinal Bend Test Results of T-222, Low Level 0 Content 

Longitudinal Bend Test Results of T-222, High Level O2 Content 

Longitudinal Bend Test Results of T-222, Preliminary Data 

Tensile Strength Versus Temperature at Two Oxygen Levels for FS-85, 
T-1 1 1, and T-222 

Yield Strength Versus Temperature at Two Oxygen Levels for FS-85, 
T-111, and T-222 

Tensile Elongation Versus Temperature at Two Oxygen Levels for 
FS-85, T-1 1 1, and T-222 

2 

Page 

5G 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

v i i  



1 Astronuclear 
laboratory 

1. INTRODUCTION 

This i s  the Ninth Quarterly Progress Report describing work accomplished under 

The objective of this program i s  to determine the weldability and Contract NAS 3-2540. 

long time elevated temperature stability of promising refractory metal alloys in order to 

determine those most suitable for use in  advanced alkali-metal space electric power systems. 

Alloys included in this investigation are listed in Table 1. 

program and program objectives was presented in the First Quarterly Report. 

A detailed discussion of the 

As an addition 

I to this program, an evaluation of the effect of oxygen contamination on the weldability and 
I 

thermal stability of refractory metal alloys has been undertaken. 

T-111, T-222, and FS-85 w i l l  be evaluated. A detailed discussion and outline of this study 

was presented in the Seventh Quarterly Report. 

Three alloys, including 

Process and test controls employed throughout this program emphasize the important 

influence of interstitial elements on the properties of refractory metal alloys. 

process and test procedures are required, including continuous monitoring of the TIG weld 

chamber atmosphere, electron beam welding in a 10 

hydrocarbon free pumping systems providing pressures less than 10 torr, and chemical 

sampling following successive stages of the evaluation for verification of these process 

contro Is. 

Stringent 

-6 
torr vacuum, aging in  furnaces employing 

-8 

Equipment requirements and set-up, and procedures for welding and testing, have 

been described i n  previous progress reports. Any improvements in processes, changes in 

procedures, or additional processes and procedures are described in this report. 

1 
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II. SUMMARY 

/ 

t 

Room temperature and elevated temperature tensile properties of the tantalum and 

columbium alloys were determined for both base metal and gas tungsten arc welded specimens. 

Tests were run at 75OF, 18OO0F, 21OO0F, and 240OOF. 

near 100% were obtained for a l l  alloys throughout the temperature range. Tensile properties 

compared well with data reported by other investigators, except for D-43 which was stronger 

and T-222 which was weaker than anticipated. 

Excellent tensile weld joint efficiencies 

The tensile data demonstrated that, on a density uncorrected basis, tantalum alloys were 

generally stronger than columbium alloys and have greater stability with increasing tempera- 

ture. Within respective alloy groups, the solid solution alloys are considerably weaker than 

those containing reactive element solute additions which enhance strength by both dispersion 

and solid solution mechanisms. 

An appreciation of the respective contribution of grain boundary strength and matrix 
32 

strength in  high temperature deformation proved important i n  interpreting the tensile data. 

Most alloys displayed a failure mode transition between 1800 F, where fractures were primarily 

of the ductile shear type, and 2400 F where intergranular failures were predominant. In this 

respect, large weld grain sizes in either weld or base metal tended to result in lowering high 

temperature ductility. This was particularly apparent with Ta-1OW. The yttrium containing 

alloys, C129Y and D43Y, exhibited extensive grain boundary separation throughout the base 

metal at the highest test temperature. Tensile elongation of the yttrium modified alloys was 

high, despite the gross separation of grain boundaries, because of small grain sizes. 

advantage due to grain size could not be realized in  welds, and weld tensiles failed with con- 

siderably less ductility. 

0 

0 

This 

The first phase of the contaminated alloy weldability study i s  essentially complete. In 

this study three alloys, T-11 1, T-222, and FS-85 are being compared on the basis of sensitivity 

to contamination by oxygen. The sensible contamination limit for this investigation was iden- 

t i f ied as 1000 ppm oxygen. 

exceeded 1000 F. 

At  this level both the weld and base bend transition temperatures 
0 

T-111 and FS-85 are about equivalent in  oxygen sensitivity although T-111 

2 
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has a definite edge because of superior init ial ductility. Both of these have a tolerance of 

about 4000 atomic ppm (360 wt  ppm in T-1 11 and 520 wt ppm in FS-85). Above this thresh- 

old, ductility decreases rapidly with increasing contamination. The threshold for T-222 

appears to be less than 2000 atomic ppm. 

Tensile results have been obtained at two oxygen levels, as received and 500 wt p p .  

As had been expected, increasing oxygen content produced higher strength and less ductile 

behavior at a l l  test temperatures, R.T., 150O0F, 1800°F, and 2200 F. The oxygen contami- 

nation strengthening effect on short time properties i s  most pronounced up to 1800 F, above 

which there i s  l i t t le difference between uncontaminated and contaminated properties, especially 

in FS-85. Room temperature ductility i s  low with contaminated T-1 1 1 ,  and T-222 exhibiting 

less than 5% tensile elongation. The variation in strength and fracture location with testing 

temperatures indicate oxide precipitation strengthening reactions are occuring, either during the 

tensile test itself, as strain aging reactions, or during the preceeding 50-hour diffusion anneal 

corresponding to the tensile testing temperature. The tensile test results of the uncontaminated 

specimens are comparable to the general tensile test results in this report for transverse welds 

in sheet specimens. Ultimate and yield strengths of T-111, T-222, and FS-85, i n  the two 

separate testing programs are similar and a difference in tensile elongation can be attributed 

to the respective thermal treatments; the regular program welds were post-weld annealed 

and the contamination program material was heat treated 50 hours at various diffusion anneal- 

ing temperatures prior to welding. 

0 

0 

111. TECHNICAL PROGRAM 

A. WE LDlN G EVALUATIONS 

1. Weld and Base Metal Tensile Properties - Tensile properties of the tantalum 

and columbium alloys were determined for base metal and tungsten arc welded specimens at 

room and elevated temperatures. The objective of this study was to provide a comparison of 

alloys based on full-range weld joint efficiencies and fracture behavior. Overall strength, 

as such, was not of primary concern in  this evaluation since short time tensile properties can- 

not be extrapolated i n  selecting alloys for long l ife space power system applications, where 

creep strength i s  of primary concern. 

3 
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In chronological sequence, tensile testing follows the previously reported weld param- 

eter and post weld annealing studies. Optimum welding parameters and annealing schedules, 

based on weld ductility, were employed in preparing tensile specimens. This provided a 

realistic basis on which to compare the alloys while also providing a consistent method of 

sample preparation for the follow-up thermal stability phase of this program. The optimized 

welding parameters and post-weld anneals for 0.035-inch sheet are listed in Table 2. 

Tensile tests of transverse base metal specimens and transverse TIG weld specimens were 

run at room temperature, 18OO0F, 21OO0F, and 24OOOF. The base metal specimens received the 

same final anneal as the weld specimens and had the same orientation, i.e., rolling direction 

parallel to the weld direction and normal to the tensile direction. Tensile specimen designs 

are shown in Figures 1 and 2. 

Tensile testing was conducted according to recommended Material Advisory Board pro- 
1 

cedures. 

the 0.6% offset yield point, then 0.05 in/in/rnin to specimen fracture. At elevated temper- 

atures a 0.05 in/in/min strain rate was used throughout the test. 

For room temperature tensiles a strain rate of 0.005 in/in/min was used through 

Base metal specimens were tested with as-rolled and cleaned surfaces. Weld specimens 

were ground flat and parallel to eliminate weld contour effects on tensile behavior. This 

eliminated weld geometry effects and therefore provided a good metallurgical measure of 

weld joint efficiency. Elevated temperature specimens were either pickled just prior to 

testing or tested in the post-weld annealed condition in which case they had already been 

pickled. Testing was accomplished in the 10 torr vacuum range. Specimen 

gage sections were wrapped in  tantalum foi I for additional contamination protection. 

-7 -6 
to low 10 

2. Tensile Test Results. The results of this investigation are described below in terms 

of general observations comparing alloys and alloy group, and in terms of the individual 

alloy behavior. The numerous references indicated in this discussion were reviewed to 

compare results of this program with those reported by other investigators. 

4 
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Sheet tensile test results are listed in Table 3 while Figures 3 through 6 provide a 

graphical comparison of alloy strength and joint efficiency. Room temperature properties of 

both sheet and plate are compared in Figure 6. 
* 

Based on ultimate strength, Figures 3 and 6, excellent joint efficiencies of nearly 100% 

were obtained for these alloys over the entire temperature range. Hence, a l l  the alloys satisfy 

the basic objective of  the tensile screening study. 

This data shows that, on a density uncorrected basis, tantalum alloys are generally 

stronger than columbium alloys and that within respective alloy groups the solid solution 

strengthened a l  loys are considerably weaker than those which contain reactive element addi- 

tions. The reactive elements, hafnium and zirconium, enhance strength both by dispersion and 

solid solution mechanisms. Carbide strengthening proved particularly beneficial in the case 

of D-43 which exhibits strength superiority among the columbium alloys at 240OOF. The 

experimental yttrium modification of this alloy identified as D-43Y, i s  considerably weaker. 

Interestingly, most of the columbium alloys lose uniqueness at 2400OF as demonstrated by a 

convergence of tensile strengths. 

The tantalum alloy strength advantage i s  also evident in  the yield strength comparison, 

Figure 4. Only D-43 among the columbium alloys exhibits a yield strength equivalent to that 

of T-222. The tantalum alloys also have an implied stability advantage since columbium alloy 

yield strengths fa1 I off considerably faster with increasing temperature. The tendency for weld 

yield strengths to equal or exceed base metal yield strength reflects the fact that straining in 

transverse weld tensile tests i s  generally localized and does not occur uniformly throughout 

the gage section. Hence, one cannot infer that a true weld yield strength greater than that 

of the base metal was realized. Similarly, a comparison of tensile elongation behavior of 

~~~ ~~~ ~ 

*See the Eight Quarterly Report for a complete summary of  the plate welding study. Post- 
weld anneals for plate welds are listed in Table 4. 

5 
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base and weld metal i s  not particularly meaningful since localized yielding generally results 

in a lower indicated elongation in transverse weld tensiles than in base metal specimens. 

Ta-IOW. This i s  a solid solution strengthened alloy and, as such, i s  the weakest tanta- 

lum alloy evaluated. Surprisingly, no strength reference was located for this alloy in the 

recrystallized condition. Reference for stress relieved base meta1,2’3’4’5 indicated a higher 

strength at room temperature and lower strength at 240OoF than established for the recrystal- 

lized material in this program. This difference i s  not fe l t  to be significant when considering 

the difference in final anneals. At a l l  temperatures this alloy failed in the weld between the 

weld centerline and edge. Base metal ductility was good at room temperature as indicated by 

a chisel point failure to nearly 100% reduction in  area. Although elongation increased wi th  

temperature, less reduction in area was noted between 180OoF and 2100°F due to a shift in 

failure mode from ductile shear to grain boundary separation. The elevated temperature grain 

boundary failure mode was particularly noticeable in welds which, because of a large weld 

grain size, failed at low total strain. This i s  shown dramatically in the 240OoF weld tensile 

fracture, Figure 7. This particular abrupt weld failure i s  associated primarily with Ta-IOW. 

Other alloys which also failed by intergranular separation had smaller grain sizes and 

exhibited greater elongation. The large grain size of Ta-1OW welds probably results from a 

narrow freezing range and single phase structure since i t  i s  typical of that observed in un- 

alloyed refractory metals. The corresponding base metal specimen of Ta-1OW tested at 240OoF 

displayed good ductility as evidenced by a chisel point mixed-mode failure and by grain 

elongation (uniform elongation) throughout the specimen gage section, Figure 7. This figure 

also shows an untested base metal structure and a typical as-tested structure in an area away 

from the fracture. Grain elongation, heavy working of grain boundaries and grain boundary 

triple point separations, are evident in the as-tested structure. 

T-111. This i s  a high strength alloy having a joint efficiency of 94 to 100%. The 
6 

tensile properties agree with those reported by the developen for this alloy. 

throughout the temperature range occurred in the weld rather than in the base metal. Excel- 

lent ductility was observed at room temperature with both base and weld specimens failing in 

Failures 

6 



Astronuclear 
laboratory 

ductile shear with chisel point fractures. Respective reductions in area were approximately 

100% and 80%. Ductile shear behavior persists at 18OO0F, but a transition occurs with 

increasing temperature as evidenced by a decrease in reduction of area caused by intergranu- 

lar separation and fracture before a full chisel point developed. 

This tendency was more pronounced in weld failures presumably because of the larger 

weld grain size or perhaps differences in solute distribution. The fracture transition tendency 

i s  clearly evident in the 2100°F and 2400OF weld fractures shown in Figure 8. An incipient 

weld grain boundary failure i s  evidenced at 210OoF even though the fracture occurred by 

ductile shear. The 240OoF failure results primarily from weld grain boundary separation. 

Grain boundaries oriented most closely to the plane of maximum resolved shear stress appear 

to have the greatest tendency to separate. This behavior may explain a consistency of weld 

fracture location noted for this alloy. Grain orientation varies considerably throughout any 

particular weld so that One would anticipate that an area having a favorable grain boundary 

orientation should exist. In this respect, the actual fracture location agrees favorably with 

observed weld microstructures. 

1-222. This is the highest strength alloy tested in this study. Joint efficiencies were 

good with the lowest, 88%, at 210OoF and others above 96%. Tensile properties obtained in  

this program were lower than expected. 7,8,9 A plausible explanation for this i s  found in 

stability data of T-222 reported by Ammon, Filippi, and Harrod which showed a loss in 

strength of recrystallized T-222 (one hour at 30OOOF) occurs after holding for 16 hours at 

2OOOOF. A similar response may have resulted from the post weld anneal of one hour at 2400 F 

employed in this evaluation. Since this alloy achieves it strength in part by dispersed carbide 

strengthening, a reasonable possibility of an aging response of this type exists. 

- 

9 

0 

With the exception of the room temperature test, weld specimens failed in the weld. 

Base metal failures were a l l  of the ductile shear chisel point type to about 80% reduction in 

area with a double shear l ip  finish. Weld failures were much like base metal failures through 

210OOF. At 2400OF the weld fracture mode became intergranular. This transition i s  shown in 

7 
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the photomicrographs of Figure 9. Grain boundary separations, initiated primarily at grain 
boundary triple points, were noted throughout the weld in the 2400 0 F specimen, Despite the 

0 
abrupt appearance of the 240OoF weld fracture, total elongation improved over the 2100 F test 

indicating that good uniform elongation was obtained. 

0 
8-66. This alloy has the highest strength among the columbium alloys at 2100 F, but - 

does not retain this advantage with increasing temperature. At 240OoF most of the columbium 

alloys, including 8-66, have about equivalent tensile strengths. The tensile weld efficiency 

of this alloy i s  above 92% at a l l  test temperatures. 

are in agreement with previously reported data. 

Tensile properties presented in  this report 
lO,ll,12,13,14 

Base tensiles displayed excellent ductility at a l l  temperatures by failing with chisel 

point fractures, 

boundary separations were noticed near the fracture but deformation occurred primarily by 

ductile shear, Figure 10. 

in a non-uniform grain size in  the failed specimen. 

accounts for the high elongation observed at 240OOF. 

At room temperature the failure was slightly blunted. At 240OoF grain 

0 
Straining at 2400 F was accompanied by recrystallization resulting 

Recrystallization during testing probably 

Weld specimens displayed a transition in tensile behavior. The room temperature speci- 

men failed by cleavage in the weld with a reasonable elongation but with l i t t le reduction in 

area. At 1800 F, weld failure occurred by grain boundary separation with l i t t le reduction in 

area. Considerable necking in the base metal occurred at 2100 F before intergranular failure 

occurred in the weld. At 240OoF severe necking and failure occurred in  the base metal adjacent 

to the heat affected zone. At both 210OoF and 240OoF the base metal experienced an overall 

uniform reduction in areas considerably in excess of that displayed by the weld metal. 

0 

0 

C-129Y. This alloy has moderate strength among the columbium base alloys and a joint 

efficiency throughout the temperature range of 87% or greater. The tensile values obtained 

are 8000 to 15,000 psi below those reported for the equivalent unmodified alloy C-129. Hence, 

8 
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0 
either the post weld anneal (one hour at 2400 F) or the yttrium addition results in a reduction 

of strength in this alloy. 
15,16,17 

The room temperature base metal specimen was very ductile displaying a reduction in 

area of nearly 100%. At 180OOF an intergranular failure occurred after about a 30% local 

reduction in area. At both 210OOF and 2400OF total elongation was good and intergranular 

failures occurred abruptly without local necking. Microstructural examination showed that 

gross grain boundary separation occurred throughout the gage section during testing at 2400 F, 

Figure 11. 

0 

I Weld specimens at both room temperature and 1800OF failed in the weld by ductile shear 

ures at the weld centerlines. A photomicrograph of the 240OoF fracture i s  shown in Figure 11. 

with reductions in area of about 90%. The 21OOoF and 240OoF welds had intergranular fai l-  

~ 

The fracture occurred along a single grain boundary of a peculiar centerline weld grain 

oriented in the welding direction. Gross grain boundary separation in this specimen was con- 

fined to the weld area although sporadic triple point openings were evident in the base metal 

area. 

Cb-752. This alloy has moderate strength among the columbium base alloys. At room 

temperature the tensile weld joint efficiency was 89% while at elevated temperatures it 
2, '18, 19, 20, 21, 22,14 

always exceeded 100%. Tensile properties agree well with those reported 
n. 
LI  

by others. Duplex annealing i s  presently employed to  optimize strength in  this alloy. At 

room temperature the duplex annealed strength i s  10,000 to 15,000 pi higher than material 

employed in this program. At temperatures between 2000 and 240OoF this advantage i s  not 

realized and the duplex annealed strength comes within 4000 pi of results obtained in this 

eva I uation . 

I 

, 
I 
I 

Ductile shear type fractures were observed for a l l  specimens. Elongation increased 

rapidly at temperatures above 18OOOF. At room temperature and 18OO0F, weld specimens 

failed in the weld whereas at 210OOF and 240OoF weld specimens failed in  the base metal. 

9 
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Specimen fractures were either necked down to a chisel point or necked down with a double 

shear l ip finish, Hence, a transition at high temperature to intergranular fracture did not 

occur in this alloy. The 240OoF ductile shear fracture i s  shown in Figure 12. No evidence of 

grain boundary separation was observed in the weld or base metal microstructures. 

0-43. This proved to be the highest strength columbium alloy above 210OOF. Weld 

joint tensile efficiency did not fall below 100% at any temperature. Tensile values obtained 

are 4000 to 8000 psi higher at elevated temperatures than those generally reported. 

This implies that the combination of welding and post weld annealing (one hour at 2400 F) 

employed was entirely compatible with the as-received condition which was optimized for 

high temperature strength through strain induced precipitation hardening. 

1 1,22,23,24 

0 

25 

The room temperature weld specimen failed in  the base metal. Room temperature speci- 

mens failed with about a 40% local reduction in area with a cleavage finish. At 180OOF both 

base and weld failures occurred by ductile shear while at 210OOF the weld specimen failed 

intergranularly at the weld centerline. At 240OoF both base and weld failed primarily by 

grain boundary separation. The 240OoF weld specimen failed in a particularly abrupt manner 

with l i t t le reduction in area. This failure occurred in boundaries paralleling the direction of 

maximum shear stress, Figure 13. No general or incipient failures outside the local area of 

fracture were noticed in the sectioned 2400 F base and weld specimens. 
0 

D-43Y. This experimental alloy has a modified D-43 composition containing a minor 

addition of yttrium to enhance low temperature ductility. The purpose in evaluating this 

material was to demonstrate the feasibility of improving the bend transition ductility of D-43. 

Although this bosic objective of improved duct; l i ty  was satisfied, an extensive effort beyond 

the scope of this program would have been required to identify and optimize the strengthening 

mechanisms. As produced for this program this alloy i s  the weakest one evaluated except for 

the solid solution alloy SCb-291. Whether a strength equivalent to that of D-43 could be 

developed i s  not known. However, based on an observed bulk grain boundary separation 

10 
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for which this type of fracture i s  typical. 

At a l l  temperatures weld specimens failed in the base metal indicating that maximum 

FS-85. This alloy has moderate tensile strength among the columbium alloys. However, 

for long time applications it i s  more promising than i s  obvious from tensile data since, as 

reported by Titran and Hall 

alloys. Tensile weld joint efficiencies for this alloy were above 90% at a l l  temperatures. 

Tensile values obtained agree with those previously reported 

relieved material14 has higher strength. (All alloys in this program have been evaluated in 

the recrystallized condition which i s  generally more favorable for long time strength. ) 

26 , i t s  creep strength has proven to be superior to other columbium 

except that stress 
10,13,14 

At a l l  temperatures the welds in this alloy fractured in preference to the base metal. 

At room temperature and 18OO0F, failure was predominantly of the ductile shear type produc- 

ing chisel point fractures except in the room temperature weld which necked locally to  about 

a 50% reduction in area and then failed by cleavage. A transition occurred above 1800'F 

SO that at 240OoF failures were almost completely intergranular, (Figure 15). 

SCb-291. This i s  the lowest strength alloy evaluated. Since it i s  solely solid solution 

strengthened i t s  primary purpose for inclusion in this program i s  as a reference alloy in the 

I 11 
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thermal stability study. Like the rest of the alloys i t s  joint efficiency i s  high, above 96%, 

throughout the temperature range, Failures were a l l  of the ductile shear type even though 
27 

grain boundary jogging was noted in welds. Only one strength reference was available 

which indicated 10,000 psi higher strength values for "annealed" (presumably stress-relieved) 

sheet than were obtained in this evaluation. 

B. EFFECT OF OXYGEN CONTAMINATION ON WELDABILITY 

The effect of oxygen contamination on the weldability and thermal stability of three 

selected refractory metal alloys (FS-85, T-111, and T-222) i s  being evaluated as an additional 

program to the overall weldability study. Gaseous oxidation with a low partial pressure of 

oxygen in  helium carrier gas i s  being used to contaminate 0.035-inch alloy sheet. 

doping conditions employed, 8OO0F to llOO°F, and 0 pressure of lo- '  torr, an adherent 

oxide f i l m  i s  produced which i s  subsequently diffusion annealed at higher temperatures. 

apparatus and process control are described in detail in  a preceding report. 28 Figure 16 

outlines the overall contamination program. 

shown in  Figure 17. 

screening evaluation of the three alloys, FS-85, T-111, and T-222. 

have been completed and the remainder of the Task I evaluation program including tensile 

tests, weld restraint tests, and corroborative chemical analyses are in  process. 

With the 

2 
The 

The overal I program specimen requirements are 

A l l  of the specimens have been oxygen-contaminated for Task I, a 

The bend ductility tests 

Preliminary bend ductility results had indicated T-1 11 to be the least susceptible to 

loss in ductility due to oxygen contamination. More complete results show the same trends 

with T-111 and FS-85 showing l i t t le degradation in bend ducti l i ty properties up to 4000 

atomic ppm oxygen. Because of i t s  lower density, FS-85 appears better on a weight gain 

basis, although the small difference could be overshadowed by marked differences in in- 

service contamination behavior, i.e., i f  columbium alloys had a higher oxidation rate than 

tantalum alloys under operating conditions. Both our contamination runs and data reported 

by lnouye indicate that columbium is  more readily contaminated than tantalum at oxygen 

partial pressures of  4 x 10 

work. 

29 

-1 -7 
torr for the contamination runs and 3 x 10 torr for lnouye's 
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Bend Test Results. Figures 18, 19, and 20 are summary curves showing the change in 

bend ducti le-brittle transition temperature with increasing oxygen content for the three alloys. 

The numerous bend tests curves used to develop the summary curves are included in Figures 21 

through 29. 

FS-85. FS-85 shows small loss in  ductility up to 500 weight ppm oxygen (z4000 atomic - 
pprn oxygen). The weld bend tests have a transition temperature several hundred degrees 

higher than the base metal, from the as-received oxygen level of 100 ppm up to 500 pprn oxy- 

gen. The failed bend specimens showed a slightly higher incidence of fractures in the weld 

and heat affected zone than in the base metal. The transition from a ductile to a brittle bend 

generally occurred suddenly over a small temperature range and the fracture usually extended 

over the entire specimen. Four specimens were diffusion annealed at 2200 F with no apparent 

change in  ductile-brittle transition temperature as compared to specimens diffusion annealed 

at 180OOF. 

0 

T-1 1 1. Considering the higher as-received ducti le-to-brittle transition temperature of  - 
FS-85, T-111 i s  the most tolerant of oxygen contamination of the three alloys tested. Both 

T-1 11 and FS-85 show a sharp decrease in ductility near 4000 atomic ppm oxygen (400 weight 

pprn oxygen). The data obtained do not provide a reliable comparison between welded and un- 

welded specimens because most of the specimens were ductile at the lowest available bend test 

temperature, -32OoF, thus masking possible differences in ductility. Although one oxygen con- 

tamination level, 400 weight pprn oxygen, was in the area of rapid change in bend ductility 

behavior, the weld metal specimen was ruined during welding. The failure was a centerline 

tear following the weld bead and is  considered to be the result of specimen geometry and 

welding parameters rather than an inherent material characteristic. Specimens were welded 

at higher (1000 weight pprn oxygen) and lower levels of oxygen contamination and no recur- 

rence of this problem was observed. Additional specimens w i l l  be prepared in the 300-400 

weight ppm oxygen range as a further check. Failures in  the bend test specimens generally 

occurred as unarrested fractures across the entire sample with the exception of one ductile 

13 
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weld tear at the 180 weight ppm oxygen level. Four specimens were diffusion annealed at 

220OoF with no apparent change in ducti le-brittle transition temperature compared to the 

standard specimens annealed at 1800 F. 0 

- T-222. T-222 has consistently shown a rapid loss in ductility at low oxygen contamin- 

ation levels. At the lowest contamination level evaluated, 200 weight ppm total oxygen, 

ducti Ie-brittle transition range temperature has increased from -32OoF/-25O0F to -15OoF/+ 

20OoF. Ductile bends were not obtainable at 1000°F at oxygen levels above 400 weight ppm 

oxygen. In contrast to the other two alloys, the bend test failures in T-222 generally occurred 

in the weld and heat affected zone and were arrested in the base metal. A marked difference 

was observed in the unwelded bend test specimens diffusion annealed at 2200 F. These speci- 

mens produced ductile bends at the lowest test temperature, -320 F, up to 250 weight ppm 

oxygen, the highest oxygen contamination level so evaluated. The higher temperature 

diffusion annealing treatment apparently produces a different form or distribution of oxides, 

producing a more ductile material. Hardness traverses across the 0.035-inch cross section of 

T-222 had previously 

ness profile following the 220OoF diffusion annealing temperature. Welded specimens dif- 

fusion annealed at 2200 F, however, have the same temperature-bend ducti l i ty response as 

the 180OOF diffusion annealed specimens. Bend test failures in these specimens generally 

occurred as fractures in  the weld and heat affected zone. 

0 

0 

30 
shown an overall hardness decrease and a much more uniform hard- 

0 

0 0 
Tensile Test Results. Room temperature and elevated temperature (1500 F, 1800 F, and 

2200OF) tensile tests have been obtained for the uncontaminated material and for the first 

doping level (350/500 weight ppm oxygen). The specimens were a l l  transverse weld speci- 

mens, prepared as bead-on-plate welds with both surfaces ground flat and parallel prior to 

testing. The room temperature tensile tests were diffusion annealed 50 hours at 1800 F and 

the elevated temperature specimens were heat treated 50 hours at temperatures corresponding 

to their testing temperature. These thermal treatments were used to provide an application 

oriented thermal history. Room temperature specimens were tested as surface ground and 

0 
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solvent cleaned and the elevated temperature specimens were flash pickled prior to testing in 

a vacuum below 10 torr. 
-5 

The test results are presented in curves 30, 31, and 32. As had been expected from the 

bend ductility results, increasing oxygen content produced stronger and less ductile behavior 

at a l  I test temperatures. 

up to 180OOF. 

values of less than 5% for T-111 and T-222. The uncontaminated alloys exhibit less ductility 

at 1500 F than at room temperature, after which the tensile elongation increases with temper- 

ature. 

ated T-1 11 and T-222 display the least ductility at room temperature. 

and photographs of the fractured gage length are shown in  Tables 5, 6, and 7. A detailed 

analysis of fracture behavior w i l l  be deferred until the tensile test results of a l l  five oxygen 

levels are available, but a general summary can be made. 

The oxygen contamination strengthening effect i s  very pronounced 

Tensile elongation of the contaminated alloys i s  low wi th  room temperature 

0 

0 
Contaminated FS-85 shows a similar decrease in elongation at 1500 F, but contamin- 

The tensile test data 

Tensile Test Summary. The combination of tensile test and diffusion annealing temper- 

atures has indicated the complexity of oxidation reactions in gettered refractory metal alloys. 

In reviewing these results, i t must be emphasized that the oxidation reaction occurs below 

1100 F, resulting in  a high surface concentration of oxygen. 
0 

0 
The lowest overall temperature cycle i s  seen in the 1500 F tensile specimens which are 

diffusion treated 50 hours at lSOO°F as compared to the room temperature tensile specimens 

which are diffusion treated at 180OOF. Some oxide precipitation strengthening of the base 

metal i s  presumed since the contaminated specimens generally failed in  the cast weld metal 

or apparently overaged heat affected zone. The uncontaminated alloys a l l  failed in  the base 

metal. 

0 
Both room temperature and 1800 F tensile specimens were diffusion annealed 50 hours at 

1800°F prior to testing. The fracture locations were similar for these two groups of specimens. 

Contaminated specimens a l l  failed in  the weld meta and heat affected zone and uncontaminated 

15 
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material, apparently ot benefiting from similar oxide strengthening reactions, failed in  the 

base metal. In the contaminated specimens, the cast weld metal and overaged heat affected 

zone i s  not strengthened by metal-oxide reactions and i s  weaker than the base metal. Con- 

taminated T-11 1 and T-222 show no decrease in  yield strength from 1500°F to 180OOF. The 

high strength at 180OoF could be realized by either a more uniform distribution of oxygen 

reaction products through the material cross section or by oxide precipitation reactions. 

At 22OO0F, a l l  of the specimens showed a marked loss in strength with the base metal 

becoming weaker than the weld and heat affected zone. 

in  the base metal with severe local deformation. 

failed intergranularly in the weld following appreciable base metal elongation. The oxide 

strengthening mechanisms are less effective at 2200 F for both the tantalum and columbium 

base alloys, and the overaged base metal i s  weaker than the weld and heat affected zone 

which i s  i n  the solution annealed condition. 

and corresponds to the strengthening mechanism instability typical for columbium base alloys 

i n  this temperature range. 

A l l  of the specimens but one failed 

One specimen, uncontaminated FS-85, 

0 

The loss in  strength i s  most extreme in  FS-85 

31 

The tensile test results of the uncontaminated specimens are comparable to the general 

tensile test results reported in Section I l l -A of this report since similar specimen design was 

used. The ultimate and yield strength results of T-111 , T-222, and FS-85 reported for the 

two separate programs are similar with some difference observed in the tensile elongation. 

The greater elongation observed in the contaminated alloy program specimens can be attributed 

to different thermal histories; a l l  material in  the contaminated alloy program, including the 

"as-received" oxygen level, was diffusion treated 50 hours at tensile testing temperatures prior 

to welding. 

16 
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IV. FUTURE WORK 

Preliminary data on the thermal stability study w i l l  be obtained. This includes a com- 

parison of a screening run at 170OoF and init ial program anneals at 1500, 1800, 2100 and 

2400OF. 

The weldability study of  the three tungsten alloys i s  in progress. Preliminary results 

from this effort wi I I become available. 

Final screening tests comparing the contamination sensitivity of FS-85, T-11 1 and 

T-222 w i l l  be completed. These w i l l  include weld restraint patch tests and tensile tests 

for a l l  levels of contamination. In view of the high tolerance demonstrated by T-1 11, this 

alloy w i l l  receive a more extensive evaluation which w i l l  include 1000 hours aging at five 

levels of  contamination and three aging temperatures. This evaluation will- be initiated dur- 

ing the next period. 

17 
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TABLE 1 - Alloys Included in the Weldability and Thermal Stability Evaluations 

AI  IOY 

AS -55 

8-66 

c-129Y 

Cb-752 

D-43 

FS -85 

SCb-291 

D43 + Y 

T-11 1 

T-222 

Ta-1 OW 

W-25 Re 

W 

S y Ivan i a "A 'I 

~~ 

Nominal Composition 
Weight Percent 

Cb-5W-1 Zr-O.2Y-O.06C 

Cb-5Mo-nl-1 Zr 

Cb-IOW-lOHf+Y 

Cb-1 OW-2.5Zr 

Cb-IOW-1 Zr-0.1C 

Cb-27Ta-1 OW-1 Zr 

Cb-1 OW-1 OTa 

Cb-IOW-1 Zr-O.IC+Y 

Ta -8W-2Hf 

Ta -9.6W -2.4Hf -0.01 C 

Ta -1 OW 

W -25Re 

Una I loyed 

W-0.5Hf-O.OX 

* NOTE: A l l  alloys from arc-cast and/or electron beam melted material 
except Sylvan ia  "A I' 
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C-320 
C-320 

C-320 
4-320 

d-320 

TABLE 2 - Optimized Weld Conditions 

C-320 
L-320 

C-320 
C-320 

C-320 

AI loy 

Ta-IOW 

T-111 

T-222 

B-66 

C- 1 29Y 

Cb-752 

D-43 

D-43Y 

FS-85 

SCb-291 

Process 

~ 

T I  G 
EB 

TI G 
EB 

TI G 
EB 

TI G 
EB 

T I  G 
EB 

TI G 
EB 

TI G 
EB 

TI G 
EB 

TI  G 
EB 

TI  G 
EB 

Parameters 
(1) 

7.5- 1/4- 1 18 
15-1/24 5 

15-3/8-115 
15-1/2-3.8 

30-1/4-190 
15-1/2-3.8 

15-3/8-86 
25-3/16-3.2 

30-3/8- 1 10 
50-1/2-4. 1 

30-3/8-87 
15-3/16-3.3 

30-3/8-114 
50-1/2-4.4 

15-3/8-83 
50-1/2-4.0 

15-3/8-90 
50-3/16-4.4 

15-1/4-83 
50-1/2-4.4 

One Hour Post 
Weld Anneal 
Temp., O F  

None 
None 

2400' F 
240OoF 

2400° F 
240OoF 

None 
1 9OO0F 

240OoF 
220OoF 

220OoF 
2400' F 

2403' F 
2400' F 

240OoF 
2400°F 

240OoF 
220OoF 

220OoF 
None 

Weld 
Width 

Top/ Bottom 
(inches) 

.190/. 180 

.049/. 034 

. 195/. 189 

.038/. 027 

. 180/. 159 

.039/. 026 

. 190/. 180 

.036/. 024 

,180/. 130 
.040/. 026 

. 129/. 090 

.036/. 01 7 

, 159/. 143 
.040/. 027 

. 165/. 150 

.036/. 022 

.204/. 195 

.038/. 026 

. 160/. 150 
,038/. 027 

BDBTT. 0 F (2) 

Trans. 1 Bends 
Long. 
Bends 

4-320 

0 
-225 

-200 
-250 

-75 
-200 

+ loo  
-225 

-1 75 
-250 

-175 
-200 

-275 
< -3 20 

4 -320 

-I- 75 
-175 

-225 
-250 

0 
-200 

0 
-225 

-250 
L -300 

-175 
-200 

-275 
-250 

(3) 

(1) For TIG Welds: Speed (ipm) - Clamp Spacing (in.) - Amperes 
For EB Welds: Speed (ipm) - Clamp Spacing (in.) - Milliamperes 

(All EB welds with 60-, 0.050 inch longitudinal deflection and 
150 KV beam voltage) 

(2) BDBTTzBend Ductile Brittle Transition Temperature at I t  Bend Radius Except 

(3) Probable Value (Determined Value (-125OF) 

FS-85 EB Welds at  2t Bend Radius. 
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TABLE 4 - One Hour Post Weld Annealing Temperatures Used 
on Plate Weld Tensile Specimens 

Ta-10W 

T-111 

T-222 

8-66 
C- 1 29Y 

Cb-752 

0-43 

FS-85 

SCb-291 

None 

240OoF 

240OoF 

1 9OO0F 

240OoF 

220OoF 

2400OF 

240OoF 

1 9OO0F 
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